204 research outputs found

    On the Sensitivity of TanDEM-X-Observations to Boreal Forest Structure

    Get PDF
    The structure of forests is important to observe for understanding coupling to global dynamics of ecosystems, biodiversity, and management aspects. In this paper, the sensitivity of X-band to boreal forest stem volume and to vertical and horizontal structure in the form of forest height and horizontal vegetation density is studied using TanDEM-X satellite observations from two study sites in Sweden: Remningstorp and Krycklan. The forest was analyzed with the Interferometric Water Cloud Model (IWCM), without the use of local data for model training, and compared with measurements by Airborne Lidar Scanning (ALS). On one hand, a large number of stands were studied, and in addition, plots with different types of changes between 2010 and 2014 were also studied. It is shown that the TanDEM-X phase height is, under certain conditions, equal to the product of the ALS quantities for height and density. Therefore, the sensitivity of phase height to relative changes in height and density is the same. For stands with a phase height >5 m we obtained an root-mean-square error, RMSE, of 8% and 10% for tree height in Remningstorp and Krycklan, respectively, and for vegetation density an RMSE of 13% for both. Furthermore, we obtained an RMSE of 17% for estimation of above ground biomass at stand level in Remningstorp and in Krycklan. The forest changes estimated with TanDEM-X/IWCM and ALS are small for all plots except clear cuts but show similar trends. Plots without forest management changes show a mean estimated height growth of 2.7% with TanDEM-X/IWCM versus 2.1% with ALS and a biomass growth of 4.3% versus 4.2% per year. The agreement between the estimates from TanDEM-X/IWCM and ALS is in general good, except for stands with low phase height

    National Forest Biomass Mapping Using the Two-Level Model

    Get PDF
    This article uses the two-level model (TLM) to predict above-ground biomass (AGB) from TanDEM-X synthetic aperture radar (SAR) data for Sweden. The SAR data were acquired between October 2015 and January 2016 and consisted of 420 scenes. The AGB was estimated from forest height and canopy density estimates obtained from TLM inversion with a power law model. The model parameters were estimated separately for each satellite scene. The prediction accuracy at stand-level was evaluated using field inventoried references from entire Sweden 2017, provided by a forestry company. AGB estimation performance varied throughout the country, with smaller errors in the north and larger in the south, but when the errors were expressed in relative terms, this pattern vanished. The error in terms of root mean square error (RMSE) was 45.6 and 27.2 t/ha at the plot- and stand-level, respectively, and the corresponding biases were -8.80 and 11.2 t/ha. When the random errors related to using sampled field references were removed, the RMSE decreased about 24% to 20.7 t/ha at the stand-level. Overall, the RMSE was of similar order to that obtained in a previous study (27-30 t/ha), where one linear regression model was used for all scenes in Sweden. It is concluded that, using the power law model with parameters estimated for each scene, the scene-wise variations decreased

    Predictions of Biomass Change in a Hemi-Boreal Forest Based on Multi-Polarization L- and P-Band SAR Backscatter

    Get PDF
    Above-ground biomass change accumulated during four growth seasons in a hemi-boreal forest was predicted using airborne L- and P-band synthetic aperture radar (SAR) backscatter. The radar data were collected in the BioSAR 2007 and BioSAR 2010 campaigns over the Remningstorp test site in southern Sweden. Regression models for biomass change were developed from biomass maps created using airborne LiDAR data and field measurements. To facilitate training and prediction on image pairs acquired at different dates, a backscatter offset correction method for L-band data was developed and evaluated. The correction, based on the HV/VV backscatter ratio, facilitated predictions across image pairs almost identical to those obtained using data from the same image pair for both training and prediction. For P-band, previous positive results using an offset correction based on the HH/VV ratio were validated. The best L-band model achieved a root mean square error (RMSE) of 21 t/ha, and the best P-band model achieved an RMSE of 19 t/ha. Those accuracies are similar to that of the LiDAR-based biomass change of 18 t/ha. The limitation of using LiDAR-based data for training was considered. The findings demonstrate potential for improved biomass change predictions from L-band backscatter despite varying environmental conditions and calibration uncertainties

    Predictions of Biomass Change in a Hemi-Boreal Forest Based on Multi-Polarization L- and P-Band SAR Backscatter

    Get PDF
    Above-ground biomass change accumulated during four growth seasons in a hemi-boreal forest was predicted using airborne L- and P-band synthetic aperture radar (SAR) backscatter. The radar data were collected in the BioSAR 2007 and BioSAR 2010 campaigns over the Remningstorp test site in southern Sweden. Regression models for biomass change were developed from biomass maps created using airborne LiDAR data and field measurements. To facilitate training and prediction on image pairs acquired at different dates, a backscatter offset correction method for L-band data was developed and evaluated. The correction, based on the HV/VV backscatter ratio, facilitated predictions across image pairs almost identical to those obtained using data from the same image pair for both training and prediction. For P-band, previous positive results using an offset correction based on the HH/VV ratio were validated. The best L-band model achieved a root mean square error (RMSE) of 21 t/ha, and the best P-band model achieved an RMSE of 19 t/ha. Those accuracies are similar to that of the LiDAR-based biomass change of 18 t/ha. The limitation of using LiDAR-based data for training was considered. The findings demonstrate potential for improved biomass change predictions from L-band backscatter despite varying environmental conditions and calibration uncertainties

    Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery : quantifying the improvement in estimation accuracy

    Get PDF
    The aim of this study was to investigate the capabilities of two date satellite-derived image-based point clouds (IPCs) to estimate forest aboveground biomass (AGB). The data sets used include panchromatic WorldView-2 stereo-imagery with 0.46 m spatial resolution representing 2014 and 2016 and a detailed digital elevation model derived from airborne laser scanning data. Altogether, 332 field sample plots with an area of 256 m(2) were used for model development and validation. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-nearest neighbour imputation models developed with sample plot data for predicting AGB. AGB predictions for 2014 (AGB(2014)) were projected to 2016 using growth models (AGB(Projected_2016)) and combined with the AGB estimates derived from the 2016 data (AGB(2016)). AGB prediction model developed with 2014 data was also applied to 2016 data (AGB(2016_pred2014)). Based on our results, the change in the 90(th) percentile of height derived from the WorldView-2 IPC was able to characterize forest height growth between 2014 and 2016 with an average growth of 0.9 m. Features describing canopy cover and variation in height derived from the IPC were not as consistent. The AGB(2016) had a bias of -7.5% (-10.6 Mg ha(-1)) and root mean square error (RMSE) of 26.0% (36.7 Mg ha(-1)) as the respective values for AGB(Projected_2016) were 7.0% (9.9 Mg ha(-1)) and 21.5% (30.8 Mg ha(-1)). AGB(2016_pred2014) had a bias of -19.6% (-27.7 Mg ha(-1)) and RMSE of 33.2% (46.9 Mg ha(-1)). By combining predictions of AGB(2016) and AGB(Projected_2016) at sample plot level as a weighted average, we were able to decrease the bias notably compared to estimates made on any single date. The lowest bias of -0.25% (-0.4 Mg ha(-1)) was obtained when equal weights of 0.5 were given to the AGB(Projected_2016) and AGB(2016) estimates. Respectively, RMSE of 20.9% (29.5 Mg ha(-1)) was obtained using equal weights. Thus, we conclude that combination of two date WorldView-2 stereo-imagery improved the reliability of AGB estimates on sample plots where forest growth was the only change between the two dates.Peer reviewe

    The road less travelled: oligopoly and competition policy in general equilibrium. In:

    Get PDF
    Abstract I review previous approaches to modelling oligopoly in general equilibrium, and propose a new view which in principle overcomes their deficiencies: modelling firms as large in their own market but small in the economy as a whole. Implementing this approach requires a tractable specification of preferences. Dixit-Stiglitz preferences (which imply iso-elastic perceived demand functions) could be used, but "continuum-quadratic" preferences (which imply linear perceived demand functions) are more convenient. To illustrate their usefulness, I construct a simple closed-economy model of oligopoly in general equilibrium and derive some surprising implications for competition policy. JEL: D50, L13, L4

    A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains

    Get PDF
    Toxin–antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain

    Tractable non-local correlation density functionals for flat surfaces and slabs

    Full text link
    A systematic approach for the construction of a density functional for van der Waals interactions that also accounts for saturation effects is described, i.e. one that is applicable at short distances. A very efficient method to calculate the resulting expressions in the case of flat surfaces, a method leading to an order reduction in computational complexity, is presented. Results for the interaction of two parallel jellium slabs are shown to agree with those of a recent RPA calculation (J.F. Dobson and J. Wang, Phys. Rev. Lett. 82, 2123 1999). The method is easy to use; its input consists of the electron density of the system, and we show that it can be successfully approximated by the electron densities of the interacting fragments. Results for the surface correlation energy of jellium compare very well with those of other studies. The correlation-interaction energy between two parallel jellia is calculated for all separations d, and substantial saturation effects are predicted.Comment: 10 pages, 6 figure

    Estimation of forest stem volume using ALOS-2 PALSAR-2 satellite images

    Get PDF
    A first evaluation of ALOS-2 PALSAR-2 data for forest stem volume estimation has been performed at a coniferous dominated test site in southern Sweden. Both the Fine Beam Dual (FBD) polarization and the Quad-polarimetric mode were investigated. Forest plots with stem volume reaching up to a maximum of about 620 m3 ha-1 (corresponding to 370 tons ha-1) were analyzed by relating backscatter intensity to field data using an exponential model derived from the Water Cloud Model. The estimation accuracy of stem volume at plot level (0.5 ha) was calculated in terms of Root Mean Square Error (RMSE). For the best case investigated an RMSE of 43.1% was obtained using one of the FBD HV-polarized images. The corresponding RMSE for the FBD HH-polarized images was 43.9%. In the Quadpolarimetric mode the lowest RMSE at HV- and HHpolarization was found to be 39.8% and 47.4%, respectively
    corecore